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Part 6: 
Advanced Methods II 

Path Integral and non-Adiabatic 
Methods



Beyond classical nuclei: Path Integral MD
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Sometimes nuclei cannot be approximated as classical point-like 
particles. Textbook examples are:
- Tunneling processes (mainly protons)
- Quantum broadening of nuclei comparable to (or larger than) 
thermal fluctuations

Proposed solution: Consider also (light) nuclei as quantum objects 

First Principles Path Integral Molecular Dynamics (PIMD)



Path Integrals ?
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A quantum particle travelling from an initial point x0 at time t0
can reach a point x’ at time t’ along any possible path joining the 
two points… 

…each weighted with its own probability exp (-iS), being S the 
action                          of the system.
(R.P. Feynman, Statistical Mechanics, Addison Wesley, Massachusetts, 1972)
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Well, yes… Path Integrals !
The probability amplitude of finding at (x’, t’) a particle started at 
(x0, t0) is then a sum of all possible weighted paths
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where ne = t’, x0= x(t0) and x’ = x(t’) = x(ne). Formally we write
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Path Integral formulation of the partition 
function

The partition function Z(b) of a system having a Hamiltonian 
H = K + V , i.e. a kinetic term K= mv2/2 (depending on the 
velocities) and a potential term V (depending on positions) at a 
temperature T (b = 1/kBT) can be written as
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where we make use of the Trotter factorization
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Path Integral formulation of the partition 
function

Using the completeness relation                              we get
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xxdx1

and each matrix element can 
be computed as
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Path Integral formulation of the partition 
function
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Hence, the partition function reads (wP
2=P/b 2)

 )

 )(
1

)(1)(
2

1

2/

)()(
2

1

2/

1

1

1

2
1

2

11

1

2
1

11

)(

2
lim

...
2

lim



wb

b
b



b

b
b

xSx

x

xV
P

xxm

xx

P

i
i

P

P

xV
P

xxmP

xx
P

P

P

exdx

edxmP

edxdxmPZ

P

i
iiiP

P

P

i
iii

P







 

 

















 





































D
map each QM particle onto an 
effective classical system of P
beads coupled by a harmonic 
potential plus V(x)



Path Integral formulation in a Car-Parrinello 
Lagrangean scheme
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• M and M’ are different in order to keep on the same time
scale all the modes involved in the QM treatment of the nuclei
• A Nosé-Hoover thermostat is added to ensure a canonical 
sampling and to control the adiabaticity

D. Marx and M. Parrinello, 
Zeit. Phys. B 95, 143 (1994)



The Euler-Lagrange equations of motion:
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Example of application of PI-CPMD: 
proton propagation in water
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The proton is no longer a 
point-like object RH(t) but 
a (quantum) probability 
distribution F(RH).

Eigen/Zundel transition 
between oxygen Oa and Ob

M. Tuckerman et. al. Science 275, 817 (1997)
D. Marx et al. Nature 397, 601 (1999)

ROa

ROb



Example of application of PI-CPMD: Proton 
propagation in water
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Probability distributions of proton position in terms of 
H+ displacement  = |ROa-ROb| relative to the Oa-H-Ob 
midpoint. 

Quantum                    Classical



Proton propagation in water
Free energy profile as a function of : no single 

dominant structure
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About Excited States

• Photoactive molecules are also the target of potential 
technological applications in molecular optoelectronics, 
photocatalysis and photo-biochemistry

• They involve electron excitations
• Time-dependent DFT (TDDFT) has been proposed as a 

way to include electron excitation (see M. E. Casida, 
Recent Advances in Density Functional Methods, Vol. 1, 
ed. by Chong, D.P., World Scientific, Singapore, 1995) 

• Although TDDFT is computationally expensive…
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• Generally organic photoreactions involve mainly the first 
excited singlet state (S1) and the lowest triplet state (T1). 
Other excited states have a too short lifetime to be of real 
practical interest and can generally be neglected 

• see N. J. Turro, Modern Molecular Photochemistry, 
University Science Books, Mill Valley1991 
A. Zewail* Femtochemistry: Ultrafast Dynamics of the 
Chemical Bond, World Scientific Series in 20th Century 
Chemistry, Vol. 3, World Scientific, Singapore 1994

* 1999 Chemistry Nobel Prize
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About Excited States



The “minimal” excited states
• If a single valence electron is excited from the highest 

occupied (ground state) orbital a to the lowest unoccupied 
orbital b, four different determinants can be obtained 
according to the Pauli’s principle
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ROKS: Excited states@KS
• Instead of separate wavefunctions for the t and m states, it 

has been shown that it is possible to determine a single set 
of spin-restricted single-particle orbitals i(x) for the states 
i = 1,…, N+1 in such a way that

• A new DFT functional, the restricted open shell Kohn-
Sham (ROKS) functional, can be written as
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Total energy functionals for excited states

• The functionals with the superscript KS are Kohn-Sham total 
energy functionals with the difference reduced only to the 
exchange-correlation term
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…and associated equations to solve (I)

• The minimization of the functional HROKS[i(x)] with respect 
to the orbitals leads to two sets of Schrödinger-like equations, 
one for the doubly occupied orbitals…
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• …and one for the singly occupied a and b states
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Where can it be used ?
• This approach has been used to study the isomerization and 

energy changes of the rhodopsin chromophore. 
• This is the photosensitive protein in the rod cells of the retina 

of vertebrates and the process of vision.
• It, involves the photoisomerization 

as a response to the absorption of photons (in about 200 fs) and 
triggers a cascade of slower reactions that produce a specific 
biological signal (C. Molteni et al. JACS 121, 12177 (1999)).
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Doing CPMD-like dynamics with more 
than one PES
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• If the ground state S0 and the ROKS excited S1 surface are two 
accessible states (e.g. photochemistry) it is possible to adopt a 
Tully scheme (J. C. Tully, J. Chem. Phys. 93, 1061 (1990); ibid. 
55, 562 (1971))

• The electronic wavefunction for the whole system reads
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Doing CPMD-like dynamics with more 
than one PES
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Doing CPMD-like dynamics with more 
than one PES
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• aj are determined by the solution of the time-dependent 
Schrödinger equation

• For the closed shell KS ground state S0

• And for the excited ROKS S1

• n = half the (even) number of  electrons
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iĤ

000
1

0
10

*
nn

* F 

 1
1

11
1

1
1

1
1

11
1

1
11 2

1
 F n

*
n

**
nn

* 



Doing CPMD-like dynamics with more 
than one PES
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• These F0 and F1 are normalized on S0 and S1, respectively but 
they are not orthogonal to each other

• It is possible to define the quantities

Non-adiabatic coupling matrix → easy to do: wfs velocities are
directly available in CPMD
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Doing CPMD-like dynamics with more 
than one PES
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• Solving                                for                                          gives
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iĤ **  ) F


dtEia j
j

jj

1

0
exp

 ) 










 SDa

p
pDaEES

p
pia

S
a 100

0

1
01110

0

1
120 1

1


 )










 10

2
1011

1

0
10021 1

1 EESiaSDa
p
pDa

S
a

Doltsinis & Marx, Phys. Rev. Lett. 88, 166402 (2002)



Doing CPMD-like dynamics with more 
than one PES
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• Note that

• If the wavefunctions were eigenfunctions of the KS Hamiltonian, 
then |a0|2 and |a1|2 would be occupation numbers

• …but they are not. So what ?

 dtEi
j

jep

Doltsinis & Marx, Phys. Rev. Lett. 88, 166402 (2002)
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Doing CPMD-like dynamics with more 
than one PES
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• Expand on an orthonormal auxiliary set of wfs F’j
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Doing CPMD-like dynamics with more 
than one PES
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• Hence, we get

• and the orthonormal auxiliary wavefunctions and occupations

> E1 if  E0 < E1
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Doing CPMD-like dynamics with more 
than one PES
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• Transitions from one surface to the other is done according to the 
fewest switches criterion of Tully:

select a random number rnd[]=z. If z > pi then
• jump from i to j if Ej-Ei < Ti = kinetic energy in the i state
• and do not hop if Ti is insufficient to compensate for the jump 

Ej - Ei → Tully’s forbidden transitions
• Warning: The accessible time scale is of the order of fs (as in TD-

DFT, Ehrenfest MD, etc.)
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Example of application: 
Photo-isomerization of formaldimine
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Example of application: 
Photo-isomerization of formaldimine
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Doltsinis & Marx, Phys. Rev. Lett. 88, 166402 (2002)
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